BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation

نویسندگان

  • Zhuyuan Wang
  • Xuehua Hong
  • Shenfei Zong
  • Changquan Tang
  • Yiping Cui
  • Qingdong Zheng
چکیده

Photodynamic therapy (PDT) is a promising modality for cancer treatment. The essential element in PDT is the photosensitizer, which can be excited by light of a specific wavelength to generate cytotoxic oxygen species (ROS) capable of killing tumor cells. The effectiveness of PDT is limited in part by the low yield of ROS from existing photosensitizers and the unwanted side effects induced by the photosensitizers toward normal cells. Thus the design of nanoplatforms with enhanced PDT is highly desirable but remains challenging. Here, we developed a heavy atom (I) containing dipyrromethene boron difluoride (BODIPY) dye with a silylated functional group, which can be covalently incorporated into a silica matrix to form dye-doped nanoparticles. The incorporated heavy atoms can enhance the generation efficiency of ROS. Meanwhile, the covalently dye-encapsulated nanoparticles can significantly reduce dye leakage and subsequently reduce unwanted side effects. The nanoparticles were successfully taken up by various tumor cells and showed salient phototoxicity against these cells upon light irradiation, demonstrating promising applications in PDT. Moreover, the incorporated iodine atom can be replaced by a radiolabeled iodine atom (e.g., I-124, I-125). The resulting nanoparticles will be good contrast agents for positron emission tomography (PET) imaging with their PDT functionality retained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near IR excitation of heavy atom free Bodipy photosensitizers through the intermediacy of upconverting nanoparticles.

Orthogonal dimers of Bodipy were recently shown to be efficient generators of singlet oxygen. However, these dyes require green light for excitation, which would be very quickly attenuated inside the mammalian tissues. We now demonstrate that when these dyes are covalently attached to UCNPs, near IR irradiation results in very efficient generation of singlet oxygen.

متن کامل

Photosensitive Fluorescent Dye Contributes to Phototoxicity and Inflammatory Responses of Dye-doped Silica NPs in Cells and Mice

Dye-doped fluorescent silica nanoparticles provide highly intense and photostable fluorescence signals. However, some dopant dye molecules are photosensitive. A widely-used photosensitive fluorescent dopant, RuBpy, was chosen to systematically investigate the phototoxicity of the dye-doped silica nanoparticles (NPs). We investigated cell viability, DNA damage, and Reactive Oxygen Species (ROS) ...

متن کامل

Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanoparticle

Metal-enhanced fluorescence (MEF) as a newly recognized technology has been attracting considerable attention and is widely used in fluorescence-based technology. In this paper, we reported a novel distance-dependent MEF and metal-enhanced singlet oxygen generation phenomenon based on silica-coated gold nanorods (AuNRs@SiO2) core-shell structure with tetra-substituted carboxyl aluminum phthaloc...

متن کامل

Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the non...

متن کامل

Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells.

Photosensitizer doped conjugated polymer nanoparticles have been prepared by incorporating polyoxyethylene nonylphenylether (CO-520) into the nanoparticles using a re-precipitation method. The conjugated polymer, poly[9,9-dibromohexylfluorene-2,7-ylenethylene-alt-1,4-(2,5-dimethoxy)phenylene] (PFEMO), was used as the host matrix to disperse tetraphenylporphyrin (TPP) and an energy donor to enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015